Simplified Simplicial Depth for Regression and Autoregressive Growth Processes

نویسندگان

  • Christoph P. Kustosz
  • Christine H. Müller
  • Martin Wendler
چکیده

We simplify simplicial depth for regression and autoregressive growth processes in two directions. At first we show that often simplicial depth reduces to counting the subsets with alternating signs of the residuals. The second simplification is given by not regarding all subsets of residuals. By consideration of only special subsets of residuals, the asymptotic distributions of the simplified simplicial depth notions are normal distributions so that tests and confidence intervals can be derived easily. We propose two simplifications for the general case and a third simplification for the special case where two parameters are unknown. Additionally, we derive conditions for the consistency of the tests. We show that the simplified depth notions can be used for polynomial regression, for several nonlinear regression models, and for several autoregressive growth processes. We compare the efficiency and robustness of the different simplified versions by a simulation study concerning the Michaelis-Menten model and a nonlinear autoregressive process of order one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of simplicial depth estimators for polynomial regression with application to tests in shape analysis

A fast algorithm for calculating the simplicial depth of a single parameter value of a polynomial regression model and for calculating the maximum simplicial depth within an affine subspace of the parameter space or a polyhedron is presented. Since the maximum simplicial depth estimator is not unique, l1 and l2 methods are used to make the estimator unique. This estimator is compared with other...

متن کامل

Tests for multiple regression based on simplicial depth

A general approach for developing distribution free tests for general linear models based on simplicial depth is applied to multiple regression. The tests are based on the asymptotic distribution of the simplicial regression depth, which depends only on the distribution law of the vector product of regressor variables. Based on this formula, the spectral decomposition and thus the asymptotic di...

متن کامل

Process Capability Analysis in the Presence of Autocorrelation

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models, among which the autoregressive model of order one (AR (1))...

متن کامل

Process Capability Analysis in the Presence of Autocorrelation

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models among which the autoregressive model of order one (AR (1)) ...

متن کامل

Depth notions for orthogonal regression

Global depth, tangent depth and simplicial depths for classical and orthogonal regression are compared in examles and properies that are usefull for calculations are derived. Algorithms for the calculation of depths for orthogonal regression are proposed and tests for multiple regression are transfered to orthogonal regression. These tests are distribution free in the case of bivariate observat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014